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In recent years there has been renewed interest and progress on Hermite­
Birkhoff (HB) interpolation. The original source for this activity is work by
G. D. Birkhoff in 1906 [3], with a notable contribution by G. P61ya in
1931 [15]. The concrete formulation of the problem is: Given n ordered
pairs (i,j), I :'( i :'( k, 0 :'(j :'( n - I, with I designating the set of such
ordered pairs, and n numbersf~i), under what conditions on the interpolation
points {Xi}~ and the set I is it possible to determine a unique polynomial
p(x) E 7Tn-I' the class of polynomials of degree at most n - I, satisfying

when (i,n E l? (0.1)

Various restnctIOns are placed on the Xi' For example, we may require
that all are real, or more specifically Xl < X 2 < ... < Xk' Problems for
which interpolation is unique for all appropriate choices of the points are
called poised.

The customary formulation of HB interpolation problems in terms of an
incidence matrix is done in Section I, and the known results on HB poly­
nomial interpolation problems are reviewed in Section 2. Section 3 presents
three new theorems on nonpoised problems, highlighting an important
perturbation technique. Sketches of the proofs are included. An example
of a poised problem specifying linear combinations of derivatives is set
forth in Section 4. The problem of HB interpolation by polynomial splines
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seems innately more complex; some results are indicated in Section 5. Several
open problems are listed in the concluding section.

It is worthwhile to emphasize that the results announced in this paper
persist for polynomials induced by extended-complete-Tchebycheff systems
(EeT systems) and T-splines, as well as ordinary polynomials and polynomial
splines.

ADDED IN PROOF: A. Sharma [23] has also reviewed the current knowledge
of Hermite-Birkhoff interpolation. The last half of his paper reviews the work
of Tunin and his school, and applications to expansions, quadrature, and
completely convex functions. The first part includes sketches of proofs of
known results on HB interpolation, and a result explaining the difference
between our examples in (2.5) and (2.7).

In addition, Micchelli and Rivlin [24] recently studied quadrature formulae
corresponding to HB incidence matrices.

1. FORMULATIONS OF THE PROBLEM

Schoenberg [17] stated the HB polynomial interpolation problem in terms
of a k X n incidence matrix E = II eij II, where

11, (i,j)EI,
eii = lo, otherwise.

Here E exhibits n entries equal to 1, corresponding to the interpolation
conditions, and all other entries of value 0. We can obviously stipulate that
each row of E contains at least one 1.

Since the problem is linear and we are interested in unicity, without
loss of generality we can assume that allf}i) = °in Eq. (0.1). A polynomial
p(x) E 7T.._I fulfilling the homogeneous interpolation conditions is said to
interpolate E with zero data.

The incidence matrix is called poised with respect to {Xin if the only poly­
nomial interpolating E at {xi}f with zero data is the trivial polynomial. E is
called unconditionally poised if it is poised with respect to all choices {xi}f
and order-poised if it is poised with respect to all real choices of k points with
the ordering Xl < X 2 < ... < Xk'

By a shift of the origin and a change of scale, we may suppose without
restricting generality that Xl = 0, Xk = 1, and °< Xi < 1, 1 < i < k.
With this convention, an equivalent statement of the problem is: Does there
exist {Xi}~-\ °< X 2 < Xs < ... < X k- l < 1, such that

(1.1)
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where, in the case of polynomial interpolation uz(x) = xZ-I; in the more
general case of an ECT system, the uz(x) are defined explicitly as in [7, p. 276]
and form a basis of solutions for a suitable n-th order differential equation.

Each interpolation condition generates one row of the determinant, and
Dj is the j-th composed derivative operator. For example, the problem

p(O) = p(l) = 0

p'(~) = p"(~) = 0, 0< g < I,

corresponds to the incidence matrix

II~
0 0

gilI I
0 0

and the associated determinant is

I 0 0 0
0 1 2g 3g2

0 0 2 6g
I I I I

Ferguson [5] in establishing Theorem III, below, involving complex
interpolation points dealt directly with a corresponding determinantal
formula. Proofs of all other known results have relied decisively on
appropriate variants of Rolle's theorem and induction procedures. Our
methods work primarily with the determinant (1.1) and exploit some cases
of the determinantal inequalities related to total positivity developed in
Karlin [7, Chap. 10].

2. REVIEW OF KNOWN RESULTS

In 1931, P61ya [15] laid the foundation for much of the later work by
effectively applying Rolle's theorem in the analysis of two-point HB inter­
polation problems with Xl and X2 real. He underscored the relevance of certain
conditions on the incidence matrix, since commonly called the Po/ya condi­
tions (see (2.2)). Let the incidence matrix be E = II eij 1I~=1 , i:i, and define

k

mj = L eij,
i=l

(2.1)
j

M j = Lmv '
v=o
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Thus, if p(x) interpolates E with zero data, mj is the number of requirements
on the j-th derivative, and M j , the number of requirements on the poly­
nomial up to and including its j-th derivative.

THEOREM I. (P61ya [15]). Let k = 2. E is poised if and only if the
P6lya conditions

prevail.

j = 0, 1,... , n - 1, (2.2)

Since P61ya's line of analysis has been principally followed in establishing
the results summarized in this section, we will review his arguments. An
appropriate application of Rolle's theorem implies that for any polynomial
p(x) E 1Tn-1 interpolating E, p(j)(x) admits at least M j - j zeros on [Xl' X2].
Therefore, if (2.2) holds, pUlex) has at least one zero. In particular,
p(n-ll(x) = 0. Proceeding backward we infer that p(x) = 0, and so E is
poised. Suppose, conversely, that (2.2) is invalid and therefore for some v,
M v ~ v. Then there are more variables than conditions for the induced
interpolation problem for p(vl(X) and consequently there exists a nontrivial
polynomial of degree at most v interpolating E.

COROLLARY. Let E be an n-incidence matrix which does not satisfy the
P6lya conditions. Then E is not poised with respect to any set ofpoints.

It is noteworthy that P6lya was led to consider the interpolation problem
through investigations concerning thin, curved, homogeneous beams, with
given displacement, slope, moment, and/or shearing force prescribed at one
or both ends. He wished to ascertain what combinations of four boundary
conditions imply that the corresponding differential equation possesses
a unique solution. More general Hermite-Birkhoff interpolation problems,
involving k points, characterize special solutions of certain differential
equations involving forcing functions at interior points. Corresponding results
for ECT-systems are needed for the characterization of solutions for general
differential equations. In this connection, see Karlin [7, Chap. 10, p. 534].

Schoenberg revitalized the subject of HB interpolation in 1966 through
his studies of HB interpolation problems with k ?: 2 points. The conditions
at X = Xi are called Hermite if they comprise only interpolation ofconsecutive
derivatives, commencing with the value of the function itself. E is called an
Hermite matrix if it contains exclusively Hermite data, and quasi Hermite
if it embraces only Hermite data except at the endpoints Xl and Xk .

We record the following simple result. The proof can be found in Davis
[4, p. 29].
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PROPOSITION I. An Hermite matrix is unconditionally poised.

Concerning quasi Hermite matrices, we have

THEOREM II (Schoenberg [17]). Let E be a quasi-Hermite matrix, and
let all interpolation points {xi}f be real. Then E is order-poised if and only if
the P6lya conditions (2.2) are satisfied.

Remark. The P6lya conditions hold trivially if E is an Hermite matrix.
Furthermore, a quasi-Hermite matrix satisfying the P6lya conditions remains
poised if the interior interpolation nodes x2 , X3 , ••• , Xk-l are reordered or
altered but remain in the interval (Xl' Xk)'

Ferguson and, independently, Atkinson and Sharma advanced the theory
of HB interpolation problems by making the elementary but relevant obser­
vation that some incidence matrices can be decomposed into problems of
lower degree. We state this fact formally in the following proposition:

PROPOSITION II. (Ferguson [5], Atkinson and Sharma [2]). Suppose that
some P6lya constant Mvfor the incidence matrix E (see (2.1)) satisfies

M v = v + 1. (2.3)

Then columns 0, 1,... , v ofE constitute an v + 1 incidence matrix El ; columns
v + 1, v + 2,... , n - 1 comprise an n - v-I incidence matrix E2; and E is
poised at {Xi}~ if and only if both El and E2 are poised with respect to these
points.

Designate such a decomposition by E = El EB E2 • Note that we must allow
El and E2 to contain rows composed entirely of zeros. For example, the
incidence matrix

II ~
1 011 0 0 0 1 0 II1 1 0 1 0

o 0 0 0 0

can be decomposed into

and it follows from Propositions I and II and Theorem IV that the problem
is unconditionally poised.

By virtue of Proposition II it suffices to consider only n-incidence matrices
satisfying the strong P6lya conditions

M; ? j + 2, j = 0, 1,... , n - 2. (2.4)

Ferguson examined HB interpolation with complex interpolation points.
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Using a determinantal formulation of the problem, which is essential in this
context, and arguments on the number of zeros of a polynomial he established
the following striking result. We shall provide a simpler proof in [9].

THEOREM III (Ferguson [5]). An incidence matrix E satisfying the strong
P6lya conditions is unconditionally poised for complex interpolation points if
and only if k = 2, or else E is an Hermite matrix.

Ferguson and, independently, Atkinson and Sharma noted the important
fact that even blocks in the incidence matrix-i.e., the prescription of an
even number of consecutive derivatives not starting with the O-th-do not
interfere with the application of Rolle's theorem, since there must be an odd
number of zeros of f'(x) between consecutive zeros of f(x).

THEOREM IV (Ferguson [5]; Atkinson and Sharma [2]). An incidence
matrix E satisfying the P6lya conditions is unconditionally poised for real
points provided E contains only Hermite data and even blocks; or equivalently,
ifit contains no odd blocks ofnon-Hermite data.

The proof also applies when there is non-Hermite data at the endpoints,
to give

COROLLARY. An incidence matrix satisfying the POlya conditions is order­
poised if its interior rows contain no odd blocks ofnon-Hermite data.

An interesting application of Theorem IV was given by Lorentz and
Zeller [12] in their discussion of unicity for best approximation by "mono­
tone" polynomials.

Atkinson and Sharma [2] and Ferguson [5] also observed that some
incidence matrices with odd blocks, those for which the standard reasoning
with Rolle's theorem remains valid, are order-poised. More explicitly,
suppose that the left-most 1 in a block of non-Hermite data in row i is
eij = 1. Following the language of Lorentz and Zeller [13], we say that this
block is supported if there exist indices i1 , i2 , j1 , j2 such that i1 < i < i2;
A ,j2 < j; and ei j = ei j = 1.

1 1 2 2

PROPOSITION III (Atkinson and Sharma [2]). An n-incidence matrix E
satisfying the P6lya conditions is order-poised if it contains no supported odd
blocks.

As an example, let E be the incidence matrix

1 1 0 0 0 0 0 0
1 0 1 1 0 0 0 0
0 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0

640 / 6/ 1 -7
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The odd block in row 3 is not supported. However, this does not interfere
with the application ofRolle's theorem, since for x > xa , E does not prescribe
a zero for p(x).

This result, and a study of numerous examples, led Atkinson and Sharma
to conjecture that the converse statement of Proposition III is valid. The
following example of Lorentz and Zeller [13] abrogates this conjecture. To
wit, the incidence matrix

11

1 1 0 0 0 0 IIo 1 0 0 1 0
I I 0 0 0 0

(2.5)

is order-poised. Note that the second row manifests two odd blocks. However,
a portion of the Atkinson-Sharma conjecture is correct, as depicted in the
following theorem.

THEOREM V. (Lorentz [11]; Karlin and Karon [9]). Let E be an n-incidence
matrix satisfying the strong Polya conditions. Suppose that some row of E
contains exactly one odd block, which is supported. Then E is not order­
poised.

Our discovery and that of Lorentz of Theorem V were done independently
and simultaneously. He communicated his findings to us during his visit
to Stanford in April, 1970, while we were attempting to resolve fully the
Atkinson-Sharma conjecture. Lorentz' analysis of Theorem V proceeds by
prescribing explicitly all interpolation points {Xin (actually he takes them
uniformly spaced) except that one corresponding to the supported odd block,
whose location is varied. In some of his estimates, Lorentz uses decisively
the Markoff inequality estimate for the first derivative. Our proof of
Theorem V (outlined in Section 3; see [9] for full details) is also valid for
an EeT-system of functions for which there exists no natural counterpart
to the Markoff inequality.

Theorem V asserts that, independent of the structure of the other rows,
E is not order poised so long as there exists one row with a single supported
odd block. Deciding whether an incidence matrix exhibiting more than
one odd block in some row is poised appears to be a formidable problem.
Theorem VIII, below, offers an additional criterion assuring nonpoisedness
pertinent for the situation of more than one odd block. The perturbation
and coalescing procedures described in Section 3 provide a widely applicable
method for constructing new nonpoised incidence matrices from other
nonpoised incidence matrices.

In contrast to example (2.5), which is order-poised and contains two
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supported odd blocks, Lorentz and Zeller [13] pointed out that the incidence
matrix

'1 0 0 0 0 0
1 000 0 0
o 1 0 0 1 0
1 0 0 0 0 0
100 000

is not order-poised. Furthermore, it is easy to verify that

II
I 1 0 0 0 0 I'o 1 0 1 0 0
110000

(2.6)

(2.7)

is not poised with respect to the points 0, t, 1 (the fact that it is not poised
for some choice of the points is also a consequence of Theorem VIII,
Section 3). We cannot properly account for the difference between the
poised and non-poised nature of (2.5) and (2.7), respectively. On the other
hand, a criterion for distinguishing examples (2.5) and (2.6) can be based
on the perturbation process developed in Section 3 (see especially Theo­
rem VII).

In closing this section, we review briefly a few other interpolation problems
posed in terms of Hermite--Birkhoff-like interpolation conditions.

Sharma and Prasad [20] pointed out that the incidence matrices

and II~ : ~II
are not poised for trigonometric interpolation, although Hermite incidence
matrices are poised. Of course, P6lya's method does not apply in the case
of trigonometric interpolation since the order of the trigonometric poly­
nomial is not diminished by differentiation.

There has been much study of interpolation by trigonometric polynomials
for special choices of derivatives prescribed at equidistant points on the
circle. Contributions have been made by P. Tunin and his associates,
O. Kis, A. Sharma, A. K. Varma, and others; see Varma [21] for references.
Also, Varma [22] investigated an analogous interpolation problem for
algebraic polynomials. Questions of existence and convergence of the
interpolation process under refinements of the points have been of paramount
interest.

Karlin [8] considered polynomial interpolation of Hermite data with
linear combinations of derivatives at the endpoints. More specifically,
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consider interpolation points 0 = Xl < X 2 < ... < Xk = 1 with certain
prescribed linear combinations of the derivatives at 0 and 1 of the form

n-l

L AiiP(i)(O),
j~O

n-l
I BiiP(j)(l),
j~O

i = 1,2,...,p,

i=1,2,... ,q,

and a total of r prescriptions comprising Hermite data at X 2 , X 3 , ••• , Xk-l ,

with p + q + r = n.

THEOREM VI (Karlin [8]). Given the interpolation problem described
above, we make the assumptions:

(i) The p X n matrix A = 11( -1)1 Au 11 has rank p and is sign consistent
of order p (SC1J : all p X P nonzero minors from A have a single sign);

(ii) the q X n matrix B = II Bij II has rank q and is SCq .

Then the interpolation problem has a unique solution from the class 17n-l if
and only if there exist sets of indices {iJ: and UvH such that

A (1, 2, ... ,P) 'B(l, 2, ...,q) #0
iI' i2 ,· .. , i1J ·A,j2,.. ·,jq

(2.8)

(the first factor represents the minor of A drawn from columns of indices
il , i2 , , i1J , and the second, the minor of B based on the columns of indices
jt , j2 , , jq) and the problem with the new boundary conditions

p(iV)(O) = 0,

pU')(l) = 0,

v = 1,2,... ,p,

JL = 1,2,... , q,

but Hermite data at interior interpolating points as before, satisfies the Palya
conditions, i.e., is poised.

In Section 4 we will extend Theorem VI in another direction, also allowing
linear combinations of derivatives at interior interpolation points.

After investigating HB interpolation by polynomials, or, more generally,
EeT systems, a natural generalization would be to consider interpolation
by weak Tchebycheff systems. The most prominent weak T-systems are the
spline functions, defined formally later in Section 5 (see also Ahlberg,
Nilson, and Walsh [1], Greville [6], and Schoenberg [19] for detailed treat­
ments of aspects on splines). The known results on HB interpolation by
spline functions are much less extensive. Karlin's generalization of Theo­
rem VI in [8] to splines is the most complete result for interpolation at
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points not required to coincide with the knots of the splines. This result is
limited to Hermite data at interior points but permits general linear boundary
relations. Much of the interest in interpolation by spline functions arose in
the context of determining optimal quadrature formulas; for example, see
Schoenberg's work [18] on "g-splines." These results are restricted in that
one requires that interpolation take place at the spline knots. In addition,
Ritter [16] and Mangasarian and Schumaker [14] considered problems
with HB like interpolation involving inequalities.

Splines interpolating HB data can be characterized by extremal problems,
as shown by Jerome and Schumaker [6b] who also considered best approxi­
mation of linear functionals in the sense of Sard, and inequality constraints.
In [6c], the same authors derive a local basis and computational algorithms
for such splines. Jerome [6a] has investigated the Green's function and
convergence of expansions in orthogonal eigenfunctions of HB spline inter­
polation problems. All of these results rely on knowing that a corresponding
HB polynomial or spline interpolation problem is poised, but none contain
any information on this point.

We present some new results on the poisedness of HB interpolation by
spline functions in Section 5. The conditions sufficient for poised problems
cover only a restricted, but potentially important, class of problems. The
general question of necessary and sufficient conditions, even for incidence
matrices involving only even blocks, appears to be inherently complicated.

The results on interpolation by periodic splines are less complete. Moti­
vated by his investigation of best quadrature formulae, Karlin [8] demon­
strated that interpolation at the knots by a periodic spline with at least one
knot is always possible. More generally, Karlin and Lee [10] considered
generalized splines-piecewise solutions of the differential equation

(:x + Yn(X))(:X + Yn-l(X)) ... (:x + Yl(X)) p(x) = 0

where f~ Yi(X) dx =1= 0 for all i-which satisfy the periodic boundary con­
ditions

8 1;)(0) = 8(;)(1), j = 0, 1,... , n - 1.

They gave exact conditions for unique interpolation at an odd number of
points; more complete results hold if the interpolation points are made
coincident with the knots of the spline. This formulation subsumes the
usual periodic functions, including the trigonometric case.
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3. SOME CRITERIA FOR NON-POISED H-B POLYNOMIAL INTERPOLATION

Our proofs that certain incidence matrices are not poised rely principally
on perturbation arguments. Specifically we consider problems with only
three interpolation points, and then use a perturbation procedure, stated as
Theorem VII below, to establish the desired results for k > 3 points.

To illustrate the concept of coalescing interpolation points-inverse to
the perturbation procedure-we give the first part of the proof that (2.6) is
not order-poised. Suppose that Xa ---+ X 2+ in the problem associated with the
incidence matrix (2.6). The new conditions at x = X 2 become

p(x2) = p'(x2) = p(4J(X2) = O.

Next we wish to allow X 4 ---+ x2+. According to Rolle's theorem, there exists
,(X4) satisfying X2 < , < X4 , and pRe,) = O. Therefore, if x ---+ X2+, we are
led to consider the incidence matrix

o 0 0 0 0 III 1 0 1 0
o 0 0 0 0

(3.1)

According to Theorem V, this problem is not order-poised, and we invoke
Theorem VII, below, to show that (2.6) is not order-poised.

To make these ideas precise, we define indices mii and P-ii' adapting
concepts in Ferguson [5].

DEFINITION 1. Let e2.i be the first 1 in row two of the incidence matrix E.
m2,i denotes the column index containing the first zero in row one of E above
or to the right of e2.i = 1. For I > j, m2.1 is the column index corresponding
to the first zero in row one of E above or to the right of e2 .1 = I and to the
right of column m2•v , where the last previous 1 in row two is e2v = 1.

DEFINITION 2. Row two of E is coalesced with row one (X2 is coalesced
with Xl) by replacing the zeros in columns of indices {m2.i} of row one with
l's, and discarding row two.

After row two has been coalesced with row one, we can then define
indices ma.i and use them to coalesce row three into row one and continue
in this manner.

We can clearly adapt this procedure to coalesce any two consecutive
rows one to the other. In particular, we have

DEFINITION 3. P-k-l.i is defined analogously to m 2.i' but by placing
l's in the last row of E instead of the first, and thereby row k - 1 is coalesced
with row k in the natural way.

To illustrate, letting X a ---+ X2+ and X4 ---+ X2+ in (2.6), we obtain m3,1 = 1,
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ma.4 = 4, m4.0 = 2, and hence the coalesced matrix becomes (3.1), as
asserted previously. A more intricate illustration is provided by the incidence
matrix

II

0 0 0 0 0 0 0

t /' ! t
/'

! 0
i 0 0 I 0 ! 0 0 I 0 0

I ! /'
.?'

0 0 0 0 1 I~ 0 0 0 0

1 1 0 0 0 0 0 0 0

Explicitly, for this matrix mu = 2, m2•a = 4, ma.4 = 5, ma.s = 7, and the
arrows indicate how the I's in rows 2 and 3 are placed in row I when these
rows are successively coalesced.

We can now state our basic perturbation result.

THEOREM VII. Let E be an incidence matrix which is not order-poised,
and E1 , any incidence matrix from which E can be obtained by coalescing
some of the rows of E1 • Assume that the determinant corresponding to E
actually changes sign in any neighborhood of at least one of its zeros. Then
E1 is not order-poised.

The sign-change stipulation indeed occurs in Theorems V and VIII, as
indicated by the statements of these theorems.

Example (2.5) of an order-poised incidence matrix with two odd blocks
is very special, to the extent that order-poised problems with odd blocks
occur rather sparsely among the class of problems with many interpolation
points. For incidence matrices with a number of rows, there are many
procedures for coalescing points to achieve an incidence matrix satisfying
Theorem V or Theorem VIII, and then Theorem VII is applicable. Actually,
almost all prescriptions of data at additional points in (2.5) lead to a non­
order-poised problem, such as (2.6).

We illustrate the type of argument employed to validate Theorem VII
by demonstrating that (2.6) is not order-poised. Suppose (3.1) is not poised
at the points 0, g, I. Consider

Ul(X - E) u2(x - E) us(x - E)
Ul'(X) U2'(X) us'(x)

d(x; E, "I) = ui4)(x) U~4\X) U~4)(X)

Ul(X + "I) u2(x + 7]) uS<x + 7])
u1(l) ull) us(l)
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where E, TJ ~ 0; this is the determinant corresponding to the incidence
matrix (2.6) at the points 0, x - E, x, X + TJ, 1. Using Taylor's theorem,
it is easy to see that d(x; 0, 0) is the determinant associated with (3.1) apart
from a constant nonzero factor. In proving Theorem V we establish that
d(x; 0, 0) actually changes sign at x = g, so by continuity it follows that,
for suitably selected E, EI , TJ, TJI all positive and small,

Therefore, d(x; E, TJ) exhibits a zero in the interval (g - EI , g+ TJI), and
consequently (2.6) is not order-poised.

For convenience, we restate Theorem V, and underscore the fact that
the determinant of the problem suitably changes sign.

THEOREM V. Let E be the incidence matrix for an HB polynomial inter­
polation problem. Assume that E satisfies the strong P6lya conditions (2.4),
and that some row ofE contains exactly one odd supported block. Then E is not
order-poised, and the determinant (1.1) arising from E changes sign in a neigh­
borhood ofeach of its zeros.

Theorem V asserts that all incidence matrices containing a row with a
single supported odd block are not order-poised, and Proposition III states
that an incidence matrix is order-poised if it contains no supported odd
blocks. The problem remains to discern exactly which incidence matrices
containing some rows with at least two odd blocks are order-poised.
Examples (2.4)-(2.6) testify to the difficulties in resolving this problem.

The following theorem is a partial resolution of this problem, providing
a sufficient condition that an incidence matrix with some row containing
an arbitrary number of odd blocks not be poised.

THEOREM VIII. Let E be the incidence matrix for an HB polynomial
interpolation problem at three interpolation points satisfying the strong PO/ya
conditions. Assume that row two ofE contains exactly b ~ 1odd blocks starting
in columns VI , V2 , ... , Vb , respectively. Let m2i and 11-2i be the indices introduced
in Definitions 1 and 3 above. Then E is not order-poised if

(3.2)

is odd. (The P6lya constants M i are defined in (2.1).) Furthermore, (Ll)
changes sign in a neighborhood of at least one zero. The corresponding result
obtainsfor k > 3 interpolation points by suitably applying Theorem VII.
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As an illustration, for the incidence matrix (2.7) we have m2,1 = 1-'2.1 = 2,
m2•3 = 1-'2.3 = 3, VI = 1, V2 = 3. In this case (3.2) becomes 15, and hence (2.7)
is not poised, as asserted in Section 2. The underlying reasoning for the
criterion (3.2), presented more fully below, shows that the determinant
of the corresponding system of equations is positive for X2 near Xl and
negative for X2 near X 3 , and hence vanishes for some choice of X 2 between
Xl and X3'

The sufficient condition of Theorem VIII is not necessary. Indeed, a direct
calculation shows that the determinant for the incidence matrix

11

1 1 0 0 0 0 0 IIo 101 0 1 0
1 0 1 000 0

vanishes when Xl' X2' X 3 are, respectively, 0, t, 1, while the quantity (3.2)
in the case at hand is even. This example points up the fact that a nonpoised
problem can have an even number of solutions.

It was mentioned in the introduction that the proofs of all the results
in Section 2 except for Theorems III and V emulate P6lya's proof of
Theorem I, by use of embellishments of Rolle's theorem. As illustrated by
the discussion of a special case of Theorem VII done previously, we focus
directly on the determinant of the associated system of linear equations, with
the interior points X 2 , X 3 '00" Xk-l serving as parameters. A key to our
analysis is the necessary and sufficient conditions for the strict positivity
of a certain class of Fredholm determinants, set forth in Karlin's work on
total positivity [7].

To illustrate these ideas, we outline our proof of Theorem V. Consider
first an HB interpolation problem with only three nodes. Using a determinant
analogous to (Ll), we define a polynomial p(x; X2) interpolating E except
for the lowest-order condition in the odd block at X = X2 , say the v-th
derivative. For each specification of X2 in (0, 1) it is easy to establish that
p(x; x 2) is non-trivial, and p(v)(x; X2) possesses zeros in (0, 1), each of which
is simple. Now move X 2 from 0 to 1. Since each zero of p(v)(x; x 2) is simple
and varies continuously with X 2 , no zero can disappear; from the fact that
the odd block is supported, it follows that the smallest zero cannot reach
the boundary point 1. Therefore, the smallest zero must cross X2 at some
value o£2 = X2' and E is not poised at the points 0, o£2' 1. Further, o£2 is
an odd zero of p(v)(x; o£2), from which it follows that the determinant (1.1)
actually changes sign at X 2 = o£2 •

Finally, we review briefly the analysis underlying the condition (3.2) of
Theorem VIII. We compute explicitly the signs of the determinant of the
system (1.1) as x 2 ---+ 1- and X 2 ---+ 0+. It is easy to show that Hermite data at X 2
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does not affect the signs at the endpoints, and each condition in a block
contributes the same sign as the first. Therefore, only odd blocks influence
these signs. Now consider an odd block beginning in column Y. A little reflec­
tion reveals that, as X2 ---+ 0+, this block contributes a factor (-l)~, where a is
the number of zeros in columns 0, 1,... , m2,v - 1 of row one after row two
has been coalesced with it. Similarly, we find that as X2 ---+ 1-, the contribution
is (-1)13, where f3 is the number of l's in columns 0,1,... , 11-2,v - 1 of row
three of the original incidence matrix (the number of interchanges of rows
in (1.1) required to bring the row corresponding to e2 •v = 1 into its proper
place) plus 11-2,v - y (the number of derivatives required to obtain a
nonvanishing determinant at X 2 = 1). If the sum of the a'S and f3's
is odd, the signs in the neighborhoods of the endpoints differ, and the
continuous dependence of (1.1) on X 2 implies that the problem is not order­
poised.

4. POISEDNESS FOR GENERAL INTERPOLATION CONDITIONS

We describe some criteria assuring order-poisedness of HB-type poly­
nomial interpolation problems including interpolation conditions involving
linear combinations of derivatives. Karlin [8] resolved completely some
problems with such types of data prescribed at the endpoints, and Hermite
data at interior points; see Theorem VI, Section 2. The scope of these kinds
of results is indicated by an example involving three interpolation points.
For a p X n matrix A, we denote the minor composed from column indices
i1 , i2 , ••• , ip by

A(I, 2, ...,p).
i1 , i2 , ••• , i p ,

the iv's are to be in increasing order. Recall that such a matrix is sign con­
sistent of order p(SCp ) if all p-th order nonzero minors maintain a single
sign.

For polynomials p(x) E 1Tn-1 , consider a three-point interpolation problem
with interpolation functionals of the form

n-1

L CiiP(j)(1),
j~O

i = 1,2,...,p,

i = 1,2,... , q,

i = 1,2,... , r, p + q + r = n.

(4.1)
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The matrices A = II aii II, B = II hi; II, and C = II Cii II are each stipulated
to have full rank (otherwise, the problem is manifestly nonpoised). As in
Theorem VI, set A = II(-l)i aii II. Using the multilinear nature of the
determinant and the Laplace and Cauchy-Binet expansions, it is easy to
show that the determinant of the associated linear system of equations
expressing the interpolation conditions is

IAe, 2, ,P)B(I, 2,···,Q)C(I, 2, ,r)
,i1 , i2 , , i1' jl ,j2 ,... ,jq k1 , k 2 , , k r •

(4.2)

where the sum extends over the sets of indices {iv}f , {j"H, and {ku}I satisfying
o~ i1 < '" < i 1' ~ n - 1; 0 ~A < ... <jq ~ n - 1; and 0 ~ k1 < ... <
kr ~ n - 1, respectively; the final determinant, with symbol KO, is the
determinant for the interpolation problem with the interpolation functionals

p(iv)(O),

p(iv)(X),

p(kv)(l),

v = 1,2,... ,p,

0< x < 1, v = 1,2,... , q,

v = 1,2,... , r.

(4.3)

As suggested by formula (4.2), we impose the assumption that A, B, and C be
SC1' , SCq , and SCr , respectively. Note that the determinant corresponding
to (4.3) is always strictly positive if the P6lya conditions are satisfied and
no odd blocks occur at x. Thus, all the terms of (4.2) maintain the same sign
and (4.2) is actually non-zero if one term in the sum is nonzero.

To illustrate these ideas, consider the specific interpolation problem for
p(x) E 7T6 with

A = II~
0 0 1 o 0 0 II
1 -1 0 000

1 0 0 0 -1 0 0

B= 0 1 0 1 0 0 0
(4.4)

0 0 1 1 -1 0 0
0 0 -1 1 1 0 0

C = III 1 1 II

(We could allow each row of A to be multiplied by a (different) non-zero
factor each of a fixed sign, and similarly for B and C.) It is easy to check that
A, Band C are sign consistent of the proper orders. Furthermore, all the
nonzero minors of B induce HB interpolation problems in (4.3) with incidence
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matrices involving only Hermite data and/or even blocks. Therefore, the
terms in the sum (4.2) maintain a common sign, and the specific term

A (1,2) B (1, 2, 3,4) C (1) K (X, X, X, X, 0)
0,1 0,1,2,3 0 2,3,4,5,6

is non-zero, since the last determinant corresponds to the Hermite inter­
polation problem with incidence matrix

~ ~ ~ ~ ~ ~ ~ II
1 0 0 0 0 0 0

Thus, the interpolation problem corresponding to (4.1) with A, B, C as in
(4.4) is order-poised.

5. HB SPLINE INTERPOLATION

In the previous sections we have described aspects of HB interpolation
by polynomials, or, more generally, by extended complete Tchebycheff
(ECT) systems. We next discuss some facets of HB interpolation for weak
Tchebycheff systems, the most important prototype of which is polynomial
splines.

DEFINITION 5.1. A polynomial spline S(x) of degree m - 1 with fixed
knots {gj}l is a piecewise polynomial of the form

m-l P

S(x) = L ajxj + L b;(x - gjr:-1

j=O j~1

(5.1)

where the aj and bj are constants and X~-1 = xm- 1 for X > 0, = 0 for X < o.
Analogously, T-splines are defined in terms of solutions of certain general

differential operators, corresponding to ECT-systems where x+m is then
replaced by the fundamental solution kernel. Observe that a spline of degree
m - 1 is of continuity class cm-2, with jump discontinuities in its m - 1st
derivative.

DEFINITION 5.2. E = il eij II~';;~, ';'=01 is an HB spline interpolation incidence
matrix of degree m - 1 with p knots for k + 2 interpolation points provided
E is an (k + 2) x m matrix with m +pi's, corresponding to interpolation
conditions, and all other entries zero.
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Since SCm-ll(X) has jumps in its m - 1st derivative at the knots, we must
require that ei,m-l = 0 if some interpolation point'xi coincides with a spline
knot.

Remark 5.1. As in the case of polynomial interpolation, without loss
of generality we can take Xo = 0, and Xk+1. = I., This convention is adhered
to throughout this section. Accordingly, we can stipulate that

o < Xl < '" < Xk < I

o < gl < g2 < ... < gp < 1

where the Xi are the interpolation points.

EXAMPLE 5.1. The problem of finding a spline function of degree 3 with
3 knots-'-e,g., a function of the form (5.1) withm = 4 andp = 3-satisfying
the interpolation conditions

S'(O) = SI/(O) = 0,

S(XI) = SI/(xl ) = S,I/(XI) = 0,

S(1) = SI/(1) = 0

corresponds to the incidence matrix

11

0
1 1 0 II

1 0 1 1 I
11 0 I 0

(5.2)

provided Xl =1= gi' i = 1, 2, 3.
Necessary and sufficient conditions for unique interpolation by splines

(indeed, by T-splines) with quasi Hermite data and general boundary
conditions were delineated by Karlin [8]. These conditions express relations
on the location of the spline knots' relative to the interpolation points.
Only order-poised problems are meaningful.

In our studies of HO spline interpolation problems, two reduction proce­
dures and general necessary conditions for poisedness are elaborated. Then,
concentrating special attention on incidence matrices with interior rows
containing only Hermite data and/or even blocks commencing with the
first derivative, we establish that these necessary conditions. are also sufficient,
provided the problem is non-decomposable. We state our results for the case
of polynomial splines; the extension to T-splines is standard.

Referring to (5.1). we see that a spline of degree m - 1 with p fixed· knots
contains m + p free constants, the same as the number of interpolation
conditioQs. Since the interpolation problem is linear, the question of unicity
and of interpolation of arbitrary data· is equivalent to finding conditions that
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the determinant of the system of linear equations be nonvanishing. Designate
the determinant associated with the incidence matrix E by K(E).

To describe K(E), suppose that O's appear in columns iI" i2', ••• , is' of the
O-th row of E (note that s :::;; m - I). Then the polynomial part ofSex) in (5.1)
is spanned by {xi~H, and these functions, as well as the elements of
{(x - gi)'~-l}J=l , will generate the columns of K(E). If

and I's appear in columns A ,j2 ,... , jr of the last row of E (note that r ;? I),
we denote

X~j) appears in the display for K(E) if and only if eii = 1. More explicitly,
with Ui(X) = Xi, we have

K(E)

U~r')(Xl)

u~i2)(Xl)

u~rq)(Xk)

U~~l)(1)

U~;')(Xl) . .. U~~l>CXl)

U~;2) (Xl) ... U~~2)(Xl)

u~;q)(Xk) u~~q)(Xk)

U~!')(I) U~~l)(1)

(XVl(Xl - gly~-l-vl .,. (xv/Xl - g1lr~-1-Vl

(XV2(Xl - gl)'~-1-V2 .,. (XV2(Xl - g1I):;--1-V2

(X- (I - t. )m-l-ir .. , (X- (1 _ t. )m-l-ir
3 r "'1 + 3r S 11 +

(5.3)
where (Xv = (m - I)(m - 2) ... (m - v) for I :::;; v :::;; m - 1, (Xo = 1.

EXAMPLE 5.2. For the problem given in Example 5.1,

(2) (a) 0 2
K(E) = K (Xl' Xl ,Xl' , )

0, 3, gl' g2 , ga

We tum to our results on HB spline interpolation. Our first decomposition
result is analogous to Proposition II of Section 2.

PROPOSITION 5.1. Let the incidence matrix E describe an HB spline
interpolation problem of degree m - 1, and assume that for some v,
o :::;; v :::;; m - 2, the Polya constant M v- l = v. Then the first v columns of E
comprise an incidence matrix El for an HB polynomial interpolation problem
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ofdegree v-I; the last m - v columns ofE constitute an incidence matrix E2

for an HB spline interpolation problem ofdegree m - v-I with the identical
knots and interpolation points as the original problem; and

(5.4)

Just as in HB polynomial interpolation, on the basis of Proposition 5.1,
assume throughout the sequel that for the HB spline interpolation problem
under consideration the strong P6lya conditions (2.4) prevail.

In spline interpolation problems, a different type of decomposition pheno­
menon occurs: namely, a reduction into problems of the same degree but
involving fewer knots and/or interpolation points. To describe this, it is
useful to introduce two notions which are also essential in ascertaining neces­
sary conditions for poised problems.

DEFINITION 5.3. For ex = 1, 2,... , k, let net designate the number of zeros
in the first row of the matrix obtained by coalescing rows 0, 1,..., ex of E
(consult Section 3 regarding the concept of coalescing rows; entries for which
mij > m are to be discarded when rows are coalesced for an HB spline
interpolation matrix).

DEFINITION 5.4. For ex = 1,2,... , k, let Net represent the number of ones
in the last row of the matrix obtained by coalescing rows ex, ex + 1,... , k + 1
of E.

EXAMPLE 5.3. Consider the HB spline interpolation problem of degree 4
with 6 knots for the interpolation points 0 < Xl < X2 < x3 < I described
by the incidence matrix

0 0 1 0 1
0 0 I 1 0
I 0 0 0 0 (5.5)
1 1 0 1 1
0 0 0 1 1

For this problem,

nl = 2, n2 = 1, n3 = 0,

NI = 5, N2 = 5, N3 =4.

Using these definitions, we can state our necessary conditions for unicity
of spline interpolation.

THEOREM X. Let E be the incidence matrix for an HB spline interpolation
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problem with knots {gi}f for the interpolation points {Xjn. Then unique inter­
polation is possible only if the following conditions are satisfied:

(i) the P6lya conditions (2.2) hold;

(ii) if in the display of K(E), g" appears nv units to the right of Xv ,
then xv> g,,;

(iii) if in the display of K(E), gp appears Nv units to the right of Xv ,
then Xv < gp.

EXAMPLE 5.4. For the incidence matrix (5.5),

and hence K(E) is certainly zero unless Xl < ga, gl < X 2 < gs, g4 < Xa .
The reduction process is closely related to conditions (ii) and (iii), as shown

by the following result.

THEOREM XI. Let E be the incidence matrix for an HB spline interpolation
problem of degree m - 1 with knots {gi}f for the interpolation points {Xj}~

on the interval [0, 1]. Assume that E satisfies the strong P6lya conditions (2.4),
and let the indices niX and NiX, ex = 1, 2, ... , k, be defined as in Definitions 5.3
and 5.4, respectively.

(i) Let E = II eij II. Suppose that a is the least index such that

eOa = eO•a+l = .,. = eO•m - l = 1

and that

i = 1,2,... , ex; j = 0, 1,... , a-I;

that g" is niX + 1 units to the right of the last appearance ofXiX in K(E); and that

(We set go = °and will show that necessarily I-' ~p - 1.) Then the problem
can be decomposed into two HB spline interpolation problems, each of degree
m - 1, as follows:

(a) an interpolation problem on [0, XiX] with knots gl' g2 ,... , g"-l
induced by an incidence matrix E l consisting of the first ex + 1 rows of E
(corresponding to the points 0, Xl'"'' XiX)' but with an additional niX 1's in its
first row in those columns containing o's when the first ex + 1 rows of E are
coalesced;
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(b) a problem on [X", 1] with knots g"" g"'+l ,.", gp induced by an
incidence matrix E2 obtained from E by coalescing its first ex + 1 rows. If
g", = x" , we replace e1.m-1 = 1 byO in the reduced incidence matrix.

The original problem is decomposed in the sense that

(5.6)

and we write E = E1 E8 E2 •

(ii) Suppose that 1" is the minimal index such that

and that

eij = 0, i = ex, ex + 1,... , k; j = 0, 1,,,., 1" - 1;

that gy is N" - I units to the right of the first appearance of x" in K(E);
and that

(We set gP+l = 1 and will show that v;;?: 1.) Then the problem can be decom­
posed into two problems, each of degree m - 1, as follows:

(a) a problem on [0, x,,] with knots gl' g2 ,..., gy induced by an
incidence matrix E1 obtained from E by coalescing rows ex, ex + 1,,,., k + 1
of E (and if gy = XIX , e".m-1 = I in the coalesced matrix is to be replaced
by 0);

(b) a problem on [XIX' 1] with knots gy+l' gy+2 ,..., gp induced by
an incidence matrix E2 composed of rows ex, ex + 1,,,., k + 1 of E (corre­
sponding to the points x"' X"+l ,,,., 1), with an additional m - N" 1's in the
last row replacing the zeros which remain when these rows of E are coalesced.

The original problem is decomposed in the sense that (5.6) holds.

Remark 5.2. We give an example later to emphasize that this decomposi­
tion phenomenon is decisive in determining when HB spline interpolation
problems are poised.

Our final result on HB spline interpolation states a sufficient condition
for poisedness for one class of such problems.

THEOREM XII. Let E be an HB spline interpolation incidence matrix for
a problem on [0, 1] which prescribes either Hermite data or even blocks
starting with the first derivative at points in (0, 1). Assume that E satisfies



112 KARLIN AND KARON

the strong PO/ya conditions, and that the interpolation points {Xin and spline
knots {gj}f satisfy:

(i) if g" is nv + 1 units to the right of the last Xv in K(E), then Xv > g,,;

(ii) if gq is Nv - 1 units to the right of the first Xv in K(E), then Xv < gq .

Then K(E) '1= 0; that is, the problem is poised.

The proof of this result is an easy consequence of Rolle's theorem and
the theorems elaborated by Karlin in [8]. Employing Sylvester's determinant
identity, it is easy to check that K(E) > 0 under the hypotheses of Theo­
rem XII. Furthermore, it is a simple consequence of the interior rows of E
containing no odd blocks that the signs in both (5.4) and (5.6), Proposition
5.1 and Theorem XI, respectively, are plus.

The hypotheses guarantee that the problem does not decompose at any
interpolation point. The essential nature of this requirement is substantiated
by the following example:

EXAMPLE 5.5. Consider the problem with incidence matrix

1 000

E= 0 1 1 0
o 1 1 0

I 1 000

Then nl = 1, n2 = 0, Nl = 4, N 2 = 3, and

(

X h ) X(2) X(l) X(2) 0)
K(E) = l' 1 , 2 , 2 ,

1, 2, 3, gl' g2

(i) If X 2 <; gl or Xl ~ g2' then Theorem X shows that K(E) = 0,
while according to Theorem XU, K(E) > 0 if Xl < gl < g2 < X 2 •

(ii) If gl < X2 <; g2 , the problem decomposes at X 2 into

11

1 0 0 0 II 1 1 1 1
~ ~ ~ ~ EB III 0 0 0 II

where the first problem is for the points 0, Xl' X2 with knot gl , and the
second, for X 2 , 1 with knot g2 • It is clear that the second problem is poised,
while by taking a derivative we find that the first is poised if and only if
Xl < gl < X2'

(iii) If gl <; Xl < g2 , the problem decomposes at Xl into

1 0 0 0 0 II 0 1 1 0 II
111 1 1 1 1 II EB ~ ~ ~ ~
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where the first problem is for the points 0, Xl with knot tl' Reasoning as
above, we find that the problem is poised if and only if Xl < t2 < X 2 •

Summarizing, we find that K(E) > 0 if 0 < Xl < t2 < X 2 < 1 or
o < Xl < tl < X 2 < 1, and zero in all other cases. In particular, note that
K(E) = 0 if tl ~ Xl < X 2 ~ t2 whereas, if we did not decompose, we would
expect it to be nonzero from Theorem XII.

In view of the above example, sufficient conditions for unique spline
interpolation involving even blocks starting at higher derivatives than the
first are likely to be inherently complex.

6. OPEN QUESTIONS

1. The complete determination of exactly which HB polynomial incidence
matrices satisfying the strong P61ya conditions are order-poised appears
to be intrinsically complicated. Necessary and sufficient conditions are
known only for matrices each of whose interior rows contain at most one
odd block: the problem is order-poised if and only if no odd block is sup­
ported (Proposition III and Theorem V). We have added to the class of
matrices known to be non-poised with the sufficient conditions in Theorems V,
VII, and VIII.

2. We have settled the question of unicity of HB spline interpolation
only for Hermite data and even blocks beginning with the first derivative
at interior points. It would be of interest to untangle complete criteria for
unicity in more general circumstances. Apart from the independent interest
of the problem, it is also of relevance for ascertaining unicity in best approxi­
mation of functions by monotone splines (in this connection, see Lorentz
and Zeller [12]).

3. We know of no studies on HB interpolation, either in the polynomial
or spline case, with mixed conditions-i.e., interpolation conditions involving
linear combinations of the values of the function and its derivatives at several
points-except for periodic boundary conditions. Results for the latter case
are elaborated in Karlin and Lee [10].

4. It might be of interest to consider the possibility of polynomial inter­
polation by p(x) E 7Tn-l of n - r interpolation conditions, and ask for
conditions resulting in the smallest possible dimension of solutions, i.e., an
r-dimensional variety of solutions.

5. There has been sparse accomplishment on deciding unicity of HB
trigonometric interpolation (see Varma [21], and references therein, and
also Karlin and Lee [10]). More knowledge would be desirable.
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